Известен анекдот об одном из основателей современной логики Б. Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел, — римский папа. В доказательстве использовался закон Дунса Скота.
Отнимем от обеих сторон равенства 2 + 2 = 5 по 3. Получим 1 = 2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел — два разных лица. Но поскольку 1 = 2, папа и Рассел — это одно и то же лицо.
Закон приведения к абсурду — логический закон, говорящий, что если из утверждения вытекает противоречие, то это утверждение ложно.
Например, из утверждения «Треугольник имеет четыре угла» выводится как то, что у треугольника три угла, так и то, что у него четыре угла. Это означает, что исходное утверждение ложно.
Приведенные формулировки законов логики и примеров к этим законам являются довольно неуклюжими конструкциями, и звучат они непривычно. И это даже в случае самых простых по своей структуре законов. Естественный язык, использовавшийся в этих формулировках, явно не лучшее средство для данной цели. И дело даже не столько в громоздкости получаемых выражений, сколько в отсутствии ясности и точности в передаче законов.
Мало сказать, что о законах логики трудно говорить, пользуясь только обычным языком. Строго подходя к делу, нужно сказать, что они вообще не могут быть адекватно переданы на этом языке. Не случайно современная логика строит для выражения своих законов и связанных с ними понятий специальный, так называемый формализованный язык. Этот язык отличается от обычного языка прежде всего тем, что следует за логической формой и воспроизводит ее даже в ущерб краткости и легкости общения.
К законам доказательства путем приведения к абсурду относится и принцип, говорящий, что если из утверждения вытекает противоречие, то это утверждение ложно.
Довольно, впрочем, примеров логических законов. Дальнейшие примеры этого рода способны создать ошибочное представление, будто логические законы существуют и могут исследоваться порознь, в какой-то независимости друг от друга и вне определенной системы.
Такое представление было характерно для традиционной логики. Современная логика, описывающая принципы мышления с помощью специально созданного для этого формализованного языка, исследует логические законы только как элементы систем таких законов. Она интересуется при этом не столько отдельными законами, сколько системами в целом.
В подобном подходе нет, в общем-то, ничего оригинального. Всякая научная теория представляет собой систему взаимосвязанных утверждений, упорядоченную, иерархическую структуру, налагающую свой отпечаток на каждое утверждение, входящее в нее. Любое из них, будучи вырвано из системы, перестает быть частью того живого организма, каким она является, и теряет тот сложный и разветвленный смысл, каким она наделяет каждый свой элемент.
В рассмотренных до сих пор логических законах простое высказывание берется как единое, неразложимые на части целое. Раздел логики, в котором внутреннее строение простых высказываний не принимается во внимание, называется логикой высказываний и лежит в фундаменте всей логики. Логика высказываний начала складываться еще в античности. Жившие после Аристотеля философы-стоики (Филон, Хрисипп и др.)указали, в частности, такие широко употребляемые законы логики высказываний:
• «Если первое, то второе; первое имеет место; следовательно, второе также имеет место» (например: «Если день, то светло; сейчас день; значит, сейчас светло»);
• «Если первое, то второе; но второго нет; значит, нет и первого» («Если ночь, то темно; неверно, что темно; значит, сейчас не ночь») и др.
Однако логика высказываний была сформулирована только в XIX в.